Posted on Leave a comment

“HaLow” sets stage for multi-channel Wi-Fi

The Wi-Fi Alliance’s announcement of the low power version IEEE 802.11ah, dubbed “HaLow”, was dismissed by some analysts as being too late to make a significant impact in the fast growing Internet of Things (sector). That view is wrong and seriously discounts the power and momentum behind Wi-Fi, to the extent that HaLow has already received extensive coverage in the popular as well as technical press. It is already far closer to being a household name than other longstanding contenders as wireless protocols for IoT devices such as Zigbee and Zwave.

It is true that certification of HaLow compliant products will not begin until 2018, but with IoT surging forward on a number of fronts including the smart car, digital home and eHealth, SoC vendors such as Qualcomm are likely to bring out silicon before that. There are good reasons for expecting HaLow to succeed, some relating to its own specifications and others more to do with the overall evolution of Wi-Fi as a whole.

Another factor is the current fragmentation among existing contenders, with a number of other protocols vying alongside Zigbee and Zwave. This may seem to be a reason for not needing yet another protocol but actually means none of the existing ones have gained enough traction to repel a higher profile invader.

More to the point though HaLow has some key benefits over the others, one being its affinity to IP and Internet through being part of Wi-Fi. Zigbee has responded by collaborating with another wireless protocol developer Thread to incorporate IP connectivity. But HaLow has other advantages, including greater range and ability to operate in challenging RF environments. There is already a sense in which the others are having to play catch up even though they have been around for much longer.

It is true that Bluetooth now has its low energy version to overcome the very limited range of the main protocol, but even this is struggling to demonstrate adequate performance over larger commercial sites. The Wi-Fi Alliance claims that HaLow is highly robust and can cope with most real sites from large homes having thick walls containing metal, to concrete warehouse complexes.

 

The big picture is that Wi-Fi is looking increasingly like a multi-channel protocol operating at a range of frequencies to suit differing use cases. To date we have two variants, 2.4 GHz and 5 GHz, which tend to get used almost interchangeably, with the latter doubling up to provide capacity when the former is congested. In future though there will be four channels, still interchangeable but tending to be dedicated to different applications, combining to yield a single coherent standard that will cover all the basses and perhaps vie with LTE outdoors for connecting various embedded IoT and M2M devices.

HaLow comes in at around 900 MHz, which means it has less bandwidth but greater coverage than the higher frequency Wi-Fi bands and has been optimized to cope well with interference both from other radio sources and physical objects. Then we have the very high frequency 802.11ad or WiGig standard coming along at 60 GHz enabling theoretical bit rates of 5 Gbps or more, spearheaded by Qualcomm, Intel and Samsung. WiGig is a further trade-off between speed and coverage and it will most likely be confined to in-room distribution of decoded ultra HD video perhaps from a gateway or set top to a big screen TV or home cinema.

Then the 5 GHz version might serve premium video to other devices around the home, while 2.4 GHz delivers general Internet access. That would leave HaLow to take care of some wearables, sensors and other low power devices that need coverage but only modest bit rates. As it happens HaLow will outperform all the other contenders for capacity except Bluetooth, with which it will be on much of a par.

 

HaLow will be embraced by key vendors in the smart home and IoT arena, such as Paris based SoftAtHome, which already supports the other key wireless protocols in its software platform through its association with relevant hardware and SoC vendors. SoftAtHome can insulate broadband operators from underlying protocols so that they do not have to be dedicated followers of the wireless wars.

AirTies is another vendor with a keen interest as one of the leading providers of Wi-Fi technology for the home, already aiming to deliver the levels of coverage and availability promised by HaLow in the higher 2.4 GHz and 5 GHz bands. It does this by creating a robust mesh from multiple Access Points (APs), to make Wi-Fi work more like a wired point to point network while retaining all the flexibility of wireless.

 

All these trends are pointing towards Wi-Fi becoming a complete quad-channel wireless offering enabling operators to be one stop shops for the digital home of the future, as well as being able to address many IoT requirements outside it.

At the same time it is worth bearing in mind that the IoT and its relative M2M is a very large canvas, extending to remote outdoor locations, some of which are more far challenging for RF signals than almost any home. In any case while HaLow may well see off all-comers indoors, it will only be a contender out doors in areas close to fixed broadband networks. That is why there is so much interest in Heterogeneous Networks (HetNets) combining Wi-Fi with LTE and also why there are several other emerging wireless protocols for longer distance IoT communications.

One of these others is Long Range Wide Area Network (LoRaWAN), a low power wireless networking protocol announced in March 2015, designed for secure two way communication between low-cost battery-powered embedded devices. Like HaLow it runs at sub-GHz frequencies, but in bands reserved for scientific and industrial applications, optimized for penetrating large structures and subsurface infrastructures within a range of 2km. LoRaWAN is backed by a group including Cisco and IBM, as well as some leading Telcos like Bouygues Telecom, KPN, SingTel and Swisscom. The focus is particularly on harsh RF environments previously too challenging or expensive to connect, such as mines, underwater and mountainous terrain.

Another well backed contender is Narrowband-LTE (NB-LTE) announced in September 2015 with Nokia, Ericsson and Intel behind it, where the focus is more on long range and power efficient communications to remote embedded sensors on the ground. So it still looks like being a case of horses for courses given the huge diversity of RF environments where IoT and M2M will be deployed, with HaLow a likely winner indoors, but coexisting with others outside.

Posted on Leave a comment

Operators unhappy over Wi-Fi and unlicensed cellular coexistence plans

Controversy has raged for well over a year now over plans by some mobile network operators (MNOs) to extend their spectrum into unlicensed 5GHz bands currently occupied by Wi-Fi. The arguments have been both commercial and technical, centering on the rights of MNOs to compete with established Wi-Fi networks and at the same time the efficiency or fairness of mechanisms for coexistence between the two.

LTE-U enables 4G/LTE cellular services to be extended into the 5GHz unlicensed bands, which is obviously attractive for MNOs because it gives extra precious spectrum without having to pay for it while making it easier to support high bandwidth applications like premium live video streaming. But the initiative, initially proposed by Qualcomm and Ericsson, has gained some traction within the 3rd Generation Partnership Project (3GPP) primarily because many MNOs want to gain full control of heterogeneous networks combining licensed and unlicensed spectrum, so there is a major commercial force here.

MNOs have expressed frustration over Wi-Fi offload, which is necessary to avoid overload on their networks and give their subscribers the best quality experience, but means they have less control over end-to-end traffic. Not surprisingly though those Telcos with extensive Wi-Fi hot spot networks take a different line and are opposed to LTE-U. Therefore we find that operators like AT&T and BT with huge investment in Wi-Fi hotspots but smaller presence in cellular are opposed to LTE-U. On the other hand Telcos that have not bet so much on Wi-Fi but have major cellular operations now support LTE-U, including big hitters like Verizon, China Mobile, NTT DoCoMo, Deutsche Telekom and TeliaSonera.

Notably though some of the world’s biggest providers of mobile services are ambivalent about LTE-U, which some of them see as complicating rather than simplifying the drive towards heterogeneous services combining licensed and unlicensed spectrum. The view there is that Wi-Fi is best placed to occupy the unlicensed spectrum with a lot of momentum and investment behind it. The LTE-U camp counter that the technology can carry twice as much data as Wi-Fi in a given amount of 5 GHz spectrum through use of carrier aggregation via LTE-LAA. This was already defined in the LTE standards and enables multiple individual RF carrier frequencies, either in the same or different frequency bands, to be combined to provide a higher overall bit rate.

This may be true as far as it goes but is largely irrelevant for users wanting to access broadband services in their homes or public hot spots, according to the Wi-Fi community, a view shared by some MNOs as well. Birdstep, a leading Swedish based provider of smart mobile data products enabling heterogeneous services combining cellular and Wi-Fi, argues that the story is not just about the wireless domain itself but also the backhaul infrastructures behind it. Any spectral efficiency advantage offered by LTE-U would be more than cancelled out by inherent inefficiencies in the backhaul. By offering access to the world’s broadband infrastructures Wi-Fi offers greater overall scale and redundancy.

Another Wi-Fi specialist, Turkey based AirTies, contends that LTE-U is just a spectrum grabbing bid by MNOs and should be resisted. Air Ties has developed mesh and routing technologies designed to overcome the problems encountered by Wi-Fi in the real world and these are only going to get worse as unlicensed spectrum reaches even higher frequencies. The next generation of Wi-Fi based on the emerging IEEE 802.11ad standard will run in the much higher frequency band of 60 GHz, which will potentially yield a lot more capacity and performance but increase susceptibility to physical obstacles and interference. It will only work with further developments in the sort of intelligent beam forming, meshing and steering technologies that AirTies has invested in.

It is true that LTE-U proponents have worked hard to mitigate any impact of coexistence with LTE-U on Wi-Fi. In Europe and also Japan they were forced to do so anyway by regulations that required LTE-U to adhere to similar rules over fair access to spectrum as Wi-Fi. These rules insist on incorporation of LBT (Listen Before Talk) into LTE-U, a mechanism originally developed for fixed line Ethernet networks where there was a shared collision domain (it was called Carrier Sense Multiple Access or CSMA). Stakeholders that are not in favor of rapid LTE-U deployment point out that in the old Ethernet days before 10BaseT/switching, CSMA proved inefficient when there were to many devices trying to get onto the same collision domain. Total capacity could drop drastically and this issue could be reborn into the wireless world.

The European Union specified two options for LBT, one the scheme called DCF/EDCA already adopted for Wi-Fi standards and a newer scheme known as Load Base Equipment (LBE), differing in the procedure for backing off when detecting traffic in a given channel.

Naturally enough there has been an assumption in the LTE-U camp that any deployments will be safe if they do adhere to the EU’s LBE LBT standard. But this assumption has recently been challenged by CableLabs in a simulation modeling a million transmission attempts on sets of nodes following the EU LBE LBT rules. The EU LBE turned out to scale badly with increased numbers of devices, with growing numbers of collisions. This will only amplify concerns expressed by broadcasters such as Sky, as well as by some major vendors like Cisco with feet in both the Wi-Fi and LTE camps, that LTE-U poses a threat to quality of service for premium video especially.

There are no signs yet of the LTE-U camp giving up on their efforts to infiltrate the 5 GHz domain, arguing correctly that by definition unlicensed spectrum is free for all and cannot be owned by any one wireless technology. But there is a strong case for holding off from LTE-U deployments until further extensive tests and simulations have been carried out to assess the impact on capacity and QoS in real life situations.

Posted on Leave a comment

Operators plan massive carrier grade Wi-Fi expansion

Huge pent up appetite for carrier grade Wi-Fi has been confirmed by recent research commissioned by customer experience specialist Amdocs, suggesting that both cable operators and MNOs (Mobile Network Operators) will deploy this at massive scale over the next three years. The research, conducted by Real Wireless and Rethink Technology Research, identifies how operators in both these camps are in turn responding to rapidly growing dissatisfaction among their customers with the Wi-Fi performance and reliability they are getting in public hot spots in particular. The fault does not really lie with Wi-Fi itself, which has actually improved in leaps and bounds, but instead the failure to keep up with escalating expectations. People now expect levels of availability for Internet access that used to be confined to enterprise data networks and Wi-Fi has come into the firing line as the new de facto “last mile” of the broadband access infrastructure.

So as Amdocs pointed out, service providers are seeing that “best-effort” Wi-Fi is becoming less profitable and a guaranteed higher quality of experience (QoE) is needed for emerging revenue generating services such as TV everywhere and online gaming. Yet as we all know Wi-Fi QoS at public places like hotels and trains is all too often poor and inconsistent, too susceptible to data traffic congestion as well as varying spectral conditions.

Carrier Wi-Fi implies guaranteed QoS for specific services such as TV, which in turn depends on traffic management techniques in order to meet varying requirements for bandwidth and latency by giving some IP packets priority whole holding up other packets associated with less urgent applications like email. Above all carrier Wi-Fi requires strong tools for network planning and management to ensure that QoS can be maintained even at peak times. In the Amdocs survey, two thirds of respondents identified lack of such strong tools as one of the top three risk factors that might deter or delay investment in carrier-grade Wi-Fi.

Fortunately such tools are now available from a clutch of vendors that now specialize in carrier Wi-Fi after cutting their teeth in offload to broadband via Wi-Fi from cellular networks. One of them, Aptilo, now emphasizes the importance of integrating Wi-Fi at the service management level with existing backend OSS/BSS operational systems as a foundation for policy enforcement and new revenue generation. Another, Birdstep, has been focusing increasingly on the bigger picture of heterogeneous networks (HetNets) that combine Wi-Fi with cellular with the catch line of “Experience Continuity” to describe the goal of delivering optimum QoS to users wherever they are and whatever device they have.

Of the two operator categories covered by Amdocs in its research, HetNets are of greatest interest to MNOs, but carrier grade Wi-Fi itself is a major goal for many cable operators seeking to give their subscribers access to premium TV content on the road and underpin their quad play offers. The interesting aspect of the research is the suggestion that operators will be clutching carrier Wi-Fi technology almost as soon as it comes out. As a result the prediction is for penetration of carrier-grade Wi-Fi hotspots to increase from 14% at the end of 2014 to 72% by 2018.

This will not be a case of technology leaking gradually out to the market as it comes along, but being pulled hard by consumer demand. Just as high speed broadband Internet access has come to be taken for granted, carrier Wi-Fi will quickly follow.